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decade a number of approximate methods were created each of which la appll- 
cable, as a rule, only to a narrow class of problems. In case of lar e 
Roude numbers F (the effect of gravitational force Is insignificant f the 
method which ia based on expansion of desired functions In series of powers 
of UF may turn out to be sufficiently convenient. 

Thi idea of such a method la contained in the work of Voronetz ‘1 and 21. 
In these papers the author examines the problem of flow of a heavy liquid 
from an orifice in a vertical wall, The solution la limited to terms of the 
first order with respect to I./J’ . The procedure for finding further approxl- 
matlona la not refined. In the work of Gurevlch and Pykhteev [3], which IS 
based on the Idea of Voronetz, the problem of flow of ti heavy llguld from 
under a baffle Is solved to a first approximation. The work of Koetychev 
(41 ln which an analogoue method la applied to the examination of somewhat 
different questions should also be mentioned. In this paper the effectlve- 
nest of the method of small parameter Is demonstrated ln the appllcatlOn to 
the vortex problem in a bounded mass of a heavy liquid. Convergence of 
obtained series Is proven, 

1. 8h-t of tha problem ud rolutlon. Planar steady potential flow 
of a heavy incompressible fluid from a vortex ln the flnlte region of the 
plane 8 = x + t,y (the u-axla 1s oriented vertically up) 18 examined. 

1 R-_ 
f a+ C 

_- ; 
6 

A f 

43 c 

B 

The vortex Is located at the point C(r -I ). 
At points A and B of the boundary the or&l- 
nati u reaches extreme values: &ax = f, and 
?Jmin = - 1. The pressure along the ooundary 10 
constant, while, a8 will be ahown below, the 
gravltatlonal force which Is acting on the flu- 
id ia equalized by an external concentrated 
force applied to the vortex. 

From the Bernoulli equation It follows that 
the velocity y on the free surface must satls- 
fy the relationships 

Here 0 Is the acaeleratlon due to gravitational force, V, la the value 
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of velocity at Y = 0 . 
We will be looting for 

circle with a unit radius 

O.N. KiO~lov 

an analytical function I = z(c), representing a 
with the center at the origin of coordinates of _ 

the plane C over the region of flow in the 2 plane. It will be required 
that points c = t , - t and 0 will transform into points A, a and C 
correspondingly. 

A complex flow potential w = (r/&i)lng is introduced; from (1.l) we 
obtain that for 5 = ei* 

Re (Inzu’ - in z’) = In V, + l/s In (1 - cry I r) (i-2) 

Primes denote derivatives with respect to c . 
The function z(C) and the magnitude of circulation P depend on a 89 

a parameter. Assuming that In the vlclnlty of or = 0 this dependence wlll 
be analytical we will represent the desired functions In the form of power 
series 

z (f, a) = ZO Kf + m (0 + a*a, (6) + . - ., fZ* lZff) = Zk 0) + iY* 0)) (f -3) 

w (5, a) = & (1 + W, + a% + , .) In 5 (1.4) 

Here r, and yr are real constants and ak (C) are functions which are 
holomorphlc within the circle. 

Substitution of Expressions (1.3) end (1.4) into (1.2) gives 

Re f In -&- f in (I f a& + as’rs i- . ..I )I = 

(1.5) 

Expanding logarithms which enter Into Equation (1.5) in power series and 
then collecting coeSSl.cients for equal powers of Q , we obtain 811 infinite 
series of conditions which must be satisfied by functions t,(S) at the 
boundary of the circle. 

. . . . . . . . . ..*..*...*.....**..... 

In addition to this It Is necessary to require that 

20 P/*4 = 0, Yo P/n n) = - yo (- I:'* n) = I, yo’ (V, n) = yo’ (- ‘/* x) = 0 (1.7) 

4 (r/s n) = Y& We n) = Y& (- ‘Is%) = Yk’ (‘&Jr) = y** (- ‘/* n) = 0 fk = 1, 2, , . .) 

(dots denote derivatives with respect to t) 
* (1.8) 

Prom conditions (1.6) and (1.7) It follows that 

zo = 15, r, = 2Jtlve 
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Boundary conditions for the function a,(C) take the form 

where the first part becomes known after determination of Til zi (f) (i = @I* * . * 
* -9 k - i). This circumstance gives the possibility to find functions a,(C) 
successively one after the other. Constants y together with three other 
realconstants whlvh arise In the process of determination of ~~(0 are 
found from Equations (1.8), one of which Is fulfilled automatically. 

It Is not difficult to prove that for m = 0,1,2, . . . 

m+l 

bn+1= 0, zam+1= il x aGnn+l) tti, zam = 1 i ,8jE)caj+l U-9) 
j=o j=O 

Coefficients ln Equation (1.9) are real. 

With accuracy to terms a4 

zt4) = 1 15 - V, ia (1 + 57 - Vs a’ (c + ca) - V#, ia* (3 - 25% - 563 - 

- l/a1 a4 (175 - 46* - 2159J (1.10) 

"L'(4) 
= - ilv, (i - V8 a1 - ll&, a') In 6 (l.il) 

(the order of approximation Is given as the subscript In parenthesis). On 
the free surface we will have here 

Computations show that the function 6(,) 
0 < a < 0.5 we have I q4) I < 0.7. With -a 

Is weakly dependent on a and 
for Increasing from 0 to 0.5 the 
contour of thb free surface Is f&lght.ly compressed from the sides, almost wlth- 
out losing synnnetry with respect to x-axls, the circulation decreases and 
the vortex drops down. The location of the vortex Is determined from (1.10) 
for C - 0 

ze = - ll,ia (i + Via aa) 

It Is also easy to convince oneself that for any approximation and for 
any a the contour of the free surface Is symmetrical with respect to the 
y-axis, that the vortex Is located on this axis and the function a(,,) satls- 
flee the condition a(_) (n + t) = a(,) (- t). 

2. PFoot of 0on*oPgulo. ior, rolutlonr. We will prove that the series 
(1.3) and (1.4) constructed by ua converge for C = e’, absolutely and unl- 
formly with respect to the variable t at least for values of a with suf- 
ficiently small modull. As support we will use here the work of Kantorovlch 
153 -from which we borrow the following lemma. 

Lemma. If for two power series 

a& + a& + . - . + angn + - - ., b,& + b*f’ + . . . + &J” + - - - 

the coefficients satisfy the lnequalltles 

A 
I =?a I 6 (n + I)6 ’ I&&l\< B 

(n + u6 
(n = 1, 2, . . .; p > 1) 

then, coefficients 0, of the power series representing their product satlefy 
the lnequalltles 

where jfe Is a constant only depending on 6 . 

Cohsequence Applying the statement written above In turn to 
the powers of the function’ T (E) = a,&” + a&z + . . . + u,,F + . . . we obtain 
for coefficients in Of the funct1on ti (t) = dl& + dsE,* + . . . + d,,&” + . . ., 
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the following rel8tiOnshlp 
[&I< Ak I$-' 

(n + QB 

Th@ fwU?tiOn rp(t) is expanded in a power series 8s follows 

cp 0) = 2 ( a, cop nt + b, sin nr) 

It is agreed upon to call ar&e norm of function ~(6) the sum of moduli 
of coefficients in the expansion 

/IV 0) II== 2 (IOn I r- Ib, I ) 
n=O 

It is easy to convince oneself that 
-_ 

(91 0) + ‘Pt 0) II < 1% 0) II 4 II% 0) I, IlV 10) ‘98 0) II d II% 0) Il4Pt 0) Ii* II9 0) 11 .= IQ 0) II 

We propose that for 1 6 k < n the following statement Is correct 

c (k + l)P ’ (24 

Here C Is a constarrt selected in such a m8mer that the statement (2.1) 
applies for k - 1 . We will show that the constant R c8n be determined 
In such a fashion that the Inequalities (2.1) will be fulfilled for k = n>2. 

WI&h the aid of Equations (1.9) and the condition 'vn (*IT> = 0 it is not 
dlfflcult to prove that 

Equation (1.5) is expanded Into a power series In @ , and Coefficients 
for am are separated out. We will have 

----- 
Bf 2 

where 
2.’ = zj’ (&), 1 Yj = Yj tz) 

Utlllzlng (2.1) and (2.2) and properties of norms of periodic functions 
we obtain from the last relationship 



On the basis of results from Lemma 

We a88ume that the following inequalities are correct 

C 
$--24 2R 

Then 

(2.41 

cw 
For the statement (2.1) to be correct at k = n > 2 taking into conslder- 

ation (2.3) and (2.5), It Is sufficient to require thit the following tie- 
quality be satisfied 
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ship (2.6) assumes the form 

F f 0.658 [ _ ln (1 _ T) _ y] + 

1 1.714 
- 

GR 

From this R >/Be= 17.0 (here the second of 1nequalltd.k (2.4) will be 
satisfied). Therefore, the statement (2.1) 1s correct for any h at 6 = 2 
and R >R,. Consequently,the series 

ti = r0 (1 + uy, + a*r, + . . . ) 

2’ (e”, a) = 2; (e”) + az,’ (8) + aa zt’ (2’) + . . . 

will converge for ad0.058< 1 /R, (actually the limit of convergenece 
will be wider of course). With the aid of the second Inequality of (2.2) It 
Is easy to extend the last proof also to series (1.3). 

3. ?oror rating on the vorkx, Let us examine the system of external 
forces acting on a cylindrical volume of liquid bounded by a free surface 
and two planes normal to this surface. The distance between the two planes 
~;h~~lPto unity. The resultant of the gravitational force p = - tppS 

1s the density of the liquid and S Is the base area of the 
liquid volume) and Is directed along the y-axis . We wlll~show that the 
force p is equalized by an external concentrated force acting on the vortex. 

In fact, the following external force acts on the vorte> 
Ye 

J?=ip 
2 

P=$- P(dz+ idy) c 
i 

Here in the first expression the Integration Is carried out along any 
arbitrary closed contour which lies In the plane of motion and encompasses 
the vortex. The second expresslop Is applicable If z , the progectlon of 
free surface on the xy plane, Is taken as the contour of integration. But 
on z condition (1.1) Is satisfied, therefore 

f=$V,P (dz+idy)-_Vo2q (ydz+ iydy) 
s s 
L L 

TaWng Into consideration that 

idr=\dy=\ydy=O. izdy=-lyd.=S 

i L L 

we will have 
F = ipgS (3.1) 

which was to be proved. Apparently Equation (3.1) Is also applicable to any 
multlpole in the bounded mass of liquid. 

Assume the problem under examlnatlon to be solved to the nth approximation, 
I.e. functions t and U) are found with accuracy to terms of the order a'. 

Then along z 

From (3.1) we obtain 

Taking into consideration equalities Ir 

8(,) (n + t) = $,) (- t), Y(,)’ (n + t) == - Y(n)’ (-- :I, 

It 1s easy to prove that 

‘6 dy ~ w \ (n) = O 
A. 
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Therefore, 

q,, = if%? (S(n) + Qna(n)), d (n) = I *(a) dz(n) s 
L 

at the same time when P(,,) = - ipgS(,). Thus the sum Ptn,+Ptn, has the order 
a. . 

The last circumstance Is conveniently used for checking the solution, 
applying Equation 

F = i$Z, 

here C, is the coefficient for z - I, ln the expansion of the function U) 
in the viclnlty of point so. 

4, ha m$o aMhod. In the solution of Jet flow problems of gene- 
ral type by the method of expansion ln powers of c the determination of 
even the flret approxlmatlon presents as a rule considerable dlfflcultles 
which are connected with the necessity of computing singular Integrals depen- 
ding on a number of parameters 131. In the case where the solid boundary 
consists of vertical rectilinear sections It may turn out to be more advan- 
tageous to use another approximate method which permits to obtain the solu- 
tion ln the first approximation. The Idea of this method consists of the 
f ollowlng . 

According to Equation (1.1) on the free surface 

In V = In VO + 1/p In (1 - ay / I) (4.4) 

Here t Is some characteristic dimension. 
and y/I bounded on the free surface we write 

Considering a. to be small 

In V = In V, - ‘It ay I 1 

i.e. we will neglect on the right-hand side of Equation (4.1) terms of the 
order aa and hlgher. 

We introduce the following analytical function (4.2) 

F = In Vo + 21 
dw 

Mz-ln- dz 
a 

ReF= InV,---$+--lnV,ImP=7j-4 
+4 

Here g is the angle of lnallnatlon of veiccity vector to the x-axis. 
Q1 vertical rectilinear sections of a solid boundary ImF = const , and on 
the free surface ke!’ - 0 ln accordance with (4.2). Knowdng the slngular- 
ltles of the function F In the canonical region of the complex variable C 
~c~~nslmpllclty of boundary conditions permit to construct the PollowUg 

v dz 
iaz 

odu,e=p 21 
-=e F N 

Multlplylng both parts of the last equation by &/dc - j(C), we obtain 
a differential equation for determination of s(C) 

From this 

The method described was used by the author for the solution of the prob- 
lem of cavitating flow around a flat plate by a stream of a heavy liquid [6j. 
Let us now apply this method to the problem of a vortex ln a flnlte mass of 
a heavy liquid. We wlil have here 

V, --$$ exp G = Se”, 
dw ri -=-- 
dS 2ni 5 

Prom this 



Real con&ante r, V, -2, and CT, are determlned from conditions 
z (i) = il, 2 (- i) = - il 

In the final form 

2= ~[in (i + ittat+) + Ineolb~], r=4xng a L+ (4.3) 

Expanding (4.3) in series with respect to 0 we find 

= 1 It - I!, ia (i + 68) - ‘/# (5 + 5’) - . . .I, r = 2nz V, (1 + 1/,a2 + ..J (4.4) 

Conparing the last exp esslon with Bquatlons (1.10) and (1.11) we convince 
ourselves that Equations 7 4.3) solve the problem in the first approximation. 

The author Is thankful to X.X. Ourevlch for useful suggestions and advice. 
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